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Abstract

Many real-world problems are defined by complex systems of
interlocking constraints. How people are able to solve these
problems with such limited working memory capacity remains
poorly understood. We propose a formal model of human
problem-solving that uses metacognitive knowledge of its own
memory limits and imperfect reasoning to guide subproblem
choice. We compare our model to human gameplay in two
experiments using a variant of the classic game Minesweeper.
In Experiment 1, we find that participants’ accuracy was in-
fluenced both by the order of subproblems and their ability to
externalize intermediate results, indicative of a memory bottle-
neck in reasoning. In Experiment 2, we used a mouse-tracking
paradigm to assess participants’ subproblem choice and time
allocation. The model captures key patterns of subproblem
ordering, error, and time allocation. Our results point toward
memory limits and strategies for navigating those limits as cen-
tral elements of human problem-solving.

Keywords: problem solving, planning, logical reasoning,
working memory, resource rationality, metacognition

Introduction

Problem-solving in complex domains—whether designing a
scientific experiment, diagnosing a disease, or planning a
software architecture—can require reasoning through a vast
space of possible actions and outcomes. In many cases, the
sheer number of possibilities exceeds the limits of what a rea-
soner can explicitly consider at any given time. Scientists,
for instance, must decide which experiments to run without
exhaustively simulating all possible outcomes. Programmers
must plan software systems without tracking every subrou-
tine. Chess players must navigate ever-branching game trees
without computing all possible positions. In each case, the
challenge is not just uncertainty about the external world but
an internal constraint: the limits of how much information
can be actively represented and reasoned over in the mind.

Classical theories of problem-solving, particularly the
seminal work of Newell and Simon (1972) have provided
a foundational framework for how humans and machines
navigate large problem spaces. These models assume that
problem-solving proceeds via explicit search over a struc-
tured state space, simulating sequences of actions to find
those most likely to lead to desirable outcomes. Research in
both artificial intelligence and psychology has thus focused
on identifying strategies to limit the combinatorial explosion
in possible future states, for instance by limiting planning to
a few steps ahead (Keramati et al., 2016; Snider et al., 2015),
limiting search to the most promising directions (Huys et al.,
2012; Sezener, Dezfouli, & Keramati, 2019; van Opheus-
den et al., 2023), or terminating search when one plan ap-
pears much better than any other (Solway & Botvinick, 2015;
Zhang, Lipovetzky, & Kemp, 2023).

However, these models typically focus on making efficient
use of computational resources, and sidestep the memory de-

mands required to represent complex problems, for example
by positing that people represent search trees with hundreds
of nodes (van Opheusden et al., 2023). Even models that in-
corporate structured representations and heuristics to decom-
pose problems and manage complexity (Anderson, 2013) re-
quire tracking large-scale state representations, such as the
entire state of a chessboard across different search trajecto-
ries (Newell & Simon, 1972). Yet research in visual object-
tracking, numerosity perception, and verbal memory (to name
a few) suggest that people can only represent between several
to tens of bits at a time (Garner, 1953; Miller, 1956; Sims,
2016; Sims, Jacobs, & Knill, 2012). This gap between ide-
alized problem-solving models and real cognitive constraints
raises a key question: how do people structure their reason-
ing to remain within working memory limits while solving
complex problems?

Here we develop an algorithmic-level model of hu-
man problem-solving that foregrounds the issue of limited
representational capacity, drawing inspiration from classic
problem-solving approaches (Newell, Shaw, & Simon, 1959;
Newell & Simon, 1972; Anderson, 1993) as well as more
recent resource-rational approaches to planning that account
for time and memory complexity (Ho et al., 2022; Ho, Co-
hen, & Griffiths, 2023; Callaway et al., 2022). Our hypoth-
esis is that people manage memory constraints by dynami-
cally structuring their problem-solving process, constructing
subproblems incrementally and greedily, aiming to keep them
within their memory limits and moving on to a new subprob-
lem when the complexity becomes unmanageable. Crucially,
our model does not assume an abstract cost function for rea-
soning complexity, as is common in resource-rational models
(Callaway et al., 2022; Ho et al., 2022; Bhui, Lai, & Gersh-
man, 2021). Instead, it posits that people use metacognitive
awareness of a concrete capacity constraint to manage the
size and structure of their problem representations.

We test the model in two experiments using the classic
game, Minesweeper, where players deduce the locations of
mines based on numerical constraints embedded in a grid.
The constraints in Minesweeper form a web of interde-
pendencies, where deductions made in one region can in-
fluence reasoning in another, potentially far away, region.
Experiment 1 tests how memory load affects the difficulty
of Minesweeper problems. We presented participants with
Minesweeper boards in which they had to solve squares in a
predetermined order. We manipulated working memory de-
mands in two ways: by restricting access to previously solved
squares; and by varying subproblem order such that one or-
der had higher memory demands than the other. As pre-
dicted, both manipulations modulated participants’ solution
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Figure 1: Overview of our capacity-bounded problem-solving model. (A.) We represent Minesweeper boards as graphs with
variables (grey) and constraints (blue). (B.) The model solves problems incrementally by expanding local subproblems. Each
state includes a subproblem and a capacity-limited memory buffer tracking hypotheses about variable assignments. A metacog-
nitive planner decides whether to continue reasoning or to flush memory and start over by resampling a new constraint. If
continuing, a bounded reasoner (1) expands the subproblem, (2) integrates and filters assignments, and (3) trims the memory
buffer by probabilistically culling assignments that exceed its capacity limit.

rates, validating core assumptions of the model. In Experi-
ment 2, we allowed participants to freely navigate the prob-
lem space while tracking their mouse movements. We found
that the model captured the order in which people solved sub-
problems, their time allocation to different parts of the board,
and the time and location of errors. Our experimental results
highlight memory capacity as an important bottleneck in hu-
man reasoning, and our model — which uses an explicit rep-
resentation of its own memory limits to guide subproblem
choice — provides an account of problem decomposition as
a rational solution to capacity-limited reasoning.

Model

The overall structure of our model is shown in Figure 1.
We adopt the formalism of Constraint Satisfaction Problems
(CSP), a well-established framework for representing prob-
lems in logical reasoning, deduction, and discrete optimiza-
tion. Extensive research in Al has focused on developing effi-
cient algorithms and heuristics for solving CSPs (Brailsford,
Potts, & Smith, 1999; Russell & Norvig, 2016).

A CSP consists of a graph of two types of nodes: variables
v € V and constraints ¢ € C. For our purposes here, vari-

ables take binary values v € {0, 1}, while constraints enforce
relationships between them, expressed as boolean functions
¢ :Dom(c) — {0,1}. The domain of a constraint, Dom, is
the set of all possible assignments to the variables it affects.
An assignment is a mapping from a set of variables to val-
ues, e.g., (vi,v2,v3) — (0,1,0). Naive CSP solvers evaluate
all possible assignments 2/V| to find those satisfying all con-
straints. However, this is computationally expensive and re-
quires holding too many items in memory at once.

Instead, our model operates by iteratively making progress
on tractable subproblems. Our approach — inspired by se-
quential Monte Carlo models of resource-bounded reasoning
(Sanborn, Griffiths, & Navarro, 2010) as well as production
rule systems from the problem solving literature (Anderson,
Matessa, & Lebiere, 1997; Newell, 1992) — consists of sev-
eral interacting components: a bounded reasoner that noisily
updates beliefs about variables and a metacognitive planner
that chooses what to think about next by simulating constraint
evaluations using the bounded reasoner.

Bounded Reasoner. At each step, the bounded reasoner’s
state s (see yellow rectangles in Figure 1B) includes a sub-



problem, defined by a subset of variables V; C V and con-
straints Cy C C, and a memory buffer, which tracks possible
satisfying assignments A for these variables, obtained from
reasoning about the constraints. The reasoner also tracks the
total runtime #;, and the capacity overflow C, s, which quan-
tifies the amount of information lost thus far due to capacity
limits. When a new constraint c is selected for integration
(see “Metacognitive Planner” below), the memory buffer is
updated through a three-stage process (see bounded reasoner
box in Figure 1B): (1) expanding the subproblem by incor-
porating new variables from the domain of ¢, (2) combining
assignments and filtering by removing assignments inconsis-
tent with C;U{c} and (3) culling by trimming the buffer to fit
within memory.

After the expansion and filtering, we are left with a new set
of assignments A* that are consistent with the new integrated
constraint set containing variables V*, but may be too large
to fit into the memory buffer. We assume that the model’s
memory buffer information capacity is fixed to a constant L,
above which information will likely be lost. |A*| assignments

of |V*| variables require log, (%X*“) bits to represent; when
this complexity exceeds the capacity limit L, we probabilisti-
cally cull the set of proposed assignments by dropping each
assignment with probability p;. pr is chosen to be the mini-
mum probability such that memory capacity is not exceeded:

i 1 2 <L
S ((1—p>-|A*|> =

The bounded reasoner’s state is thus updated as Vy < V*,
Cy + CsU{c},and Ay + {a € A;|flip(pr) = 1}.

Notably, this mechanism introduces errors and stochastic-
ity into reasoning, making it possible to arrive at false de-
ductions, simply because the model accidentally forgot about
other valid assignments. We assume a simple model of run-
time in which the time it takes to integrate the constraint
is proportional to the product of the current assignments
and the satisfying assignments of the new constraint, so that
ty + t;+ O(JAg| - |Ac|), where A, denotes the satisfying as-
signments of the new constraint.

Finally, to account for its own limited memory, the model
keeps track of the amount of information it has lost in reason-
ing (or how much it would likely lose if it integrated a partic-
ular new constraint). This is measured as the loss in entropy
about possible satisfying assignments from forgetting, which
we denote the capacity overflow C, ¢ < C, ¢ +log,(|Ay|) —

log, (|A™).

Metacognitive Planner. The metacognitive planner lever-
ages this explicit representation of its own reasoning to guide
behavior. At each timestep, it considers two broad classes
of actions: integrating a new constraint ¢, which we label as
a. or flushing the memory buffer and restarting, which we
label as ag. It evaluates potential actions according to their
expected value, marginalizing over possible outcomes s’ of
the action a. The value of integrating a new constraint into its
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Figure 2: Predictions of the model under different memory
capacity limits, showing the proportion of the board solved
(top), and the average number of errors (bottom) as a function
of runtime, split by B,. Higher capacity limits allow it to solve
more complex subproblems successfully. When o = 0, the
model is over-optimistic about its reasoning; when Bp = 1,
the model tries to solve problems within its capacity.

current subproblem is:

Q(acls) :Es’wp(s’\ac) [NG(S7SI) - BO[C(),Y’ - Co,s} - BT[ts/ - ts]] .

Above, IG(s,s’) represents the information gain, which we
take to be the difference in joint entropy of the two states:
IG(s,s') =1og,(|As|) —log, (|Ay|), along with any deductions
that were made. Po penalizes the information loss (forgetting
valid satisfying assignments), so that higher values of By dis-
courage integrating constraints that might exceed the capacity
limits of the reasoner. Finally, By penalizes the time it took to
integrate that constraint. The value of resetting and starting
over is simply 0: Q(agl|s) = 0.

We evaluate this expectation by Monte Carlo integration—
drawing N random samples and averaging the results. By
tracking both what it knows (solved variables) and what it
might have forgotten (discarded assignments), the model can
estimate its own likelihood of making errors and adapt its
strategy accordingly. At each step, the probability that the
model chooses each action is given by softmax choice rule
(Luce, 1959), p(als) =< exp (Q(als) /7).

Figure 2 shows results of simulating the model on the 12
Minesweeper boards used in the experiments under differ-
ent memory capacity limits and information loss penalties
(Bo). As the capacity limit increases, the model can inte-
grate more information without losing track of valid possible
assignments, so the proportion of variables it correctly solves
correspondingly increases. When it does not account for its
own forgetting (Bp = 0), it is essentially over-optimistic about
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Figure 3: Left: Experiment 1. Participants were shown
Minesweeper boards and given squares to solve in a prede-
termined order. Right: Experiment 2. Participants played
an self directed game. They could only see the numbered
squares within a 3x3 window that they could move with their
mouse.

its reasoning and makes substantially more errors than when
its memory errors are penalized (Bp = 1).

Experiments and Results
Experiment 1: Guided Subproblem Solving

Our account is premised on the idea that memory de-
mands are a significant bottleneck in people’s ability to solve
hard problems, but that these demands can be mitigated
by memory-offloading via externalization and by carefully
choosing the order of subproblems. We used two manipu-
lations designed to modulate memory load and, accordingly,
subproblem difficulty at different stages of the game. First,
we introduce a manipulation in which participants are either
allowed (“Regular”) or not allowed (“No Marking”) to see
previously solved variables on the board. Second, we ma-
nipulate the order of variables on the board that participants
have to solve, with one order designed to have low incremen-
tal memory demands over the course of the game (“Curricu-
lum Order”) and the other designed to have higher average
memory complexity (“Unhelpful Order”).

We predict that participants should initially perform
equally well in the Regular and No Marking conditions, but
should diverge at later stages in solving a board, as those in
the No Marking condition do not have the benefit of offload-
ing memory burden onto the environment. We also predict
that participants in the Curriculum Order condition should
start off with high accuracy and, if they have the benefit of
marking (Regular condition), should maintain high accuracy
throughout the game. On the other hand, participants in the
Unhelpful Order should start off with low accuracy, though
they should improve over the course of the game if they are
able to offload prior solutions.

Curriculum Order Unhelpful Order
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Figure 4: Results from Experiment 1, showing binned ac-
curacy as a function of progress in the game, grouped by
whether participants were shown the results of previously-
attempted squares. The Curriculum Order trials are shown on
the left and the Unhelpful Order is shown on the right.

Stimuli Participants played on 12 boards that were gener-
ated with a logic-based solver of Minesweeper. Boards were
always 7x7 cells with 10 hidden mines and partially solved—
most of the squares were revealed and only between 12 and
19 squares were unrevealed, left to be solved by the subject.
Boards were generated with the constraint that they had a
unique solution and varied in difficulty and complexity.

Procedure We recruited 114 participants on Prolific, 11 of
whom were excluded for getting less than 50% correct across
games or for having average response times of less than 1 sec-
ond. Participants were briefed on the game of Minesweeper,
randomly assigned to either the Regular or No Marking con-
dition, and asked to play all 12 boards in random order—half
of which, chosen at random, needed to be played in the Cur-
riculum Order, and the other half in the more difficult Unhelp-
ful Order. At each step, a square on the board would be high-
lighted, and the participant was told to identify whether that
square contained a mine or not. The correct answer would
then be revealed, and the participant would be queried for an-
other square. The trial ended after the participant had given
a response for every unknown square. Participants could win
a point for each correct answer, and lose a point for an in-
correct answers, and received $0.02 performance reward per
bonus point they collected in this way at the end of the game.
Results Figure 4 shows participants’ accuracy as a func-
tion of progress in the game in each condition. The results
confirmed our main hypotheses: participants started off with
higher accuracy in the Curriculum Order condition and only
maintained (or increased) in accuracy in either ordering if
they could externalize intermediate results. We ran a mixed-
effects logistic regression predicting accuracy from relative
progress, difficulty, and condition, with random subject and
stimulus effects. Participants in the Unhelpful Order condi-
tion initially had significantly lower accuracy compared to the
Curriculum Order condition (f = —0.77, p < .001), but their
accuracy improved over time (B = 1.24, p < .001). External-
ization (No Marking condition) did not significantly impact
initial accuracy (B = 0.16, p = .36), but it interacted with
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Figure 5: The probability of a square being marked correctly by humans (top) and our model (bottom) at a given point in time,
for five out of the twelve boards we test in Experiment 2. Each curve is colored by the rank of human accuracy on that square

halfway through the game.

relative progress (p = —0.73, p < .001), indicating that par-
ticipants in the No Marking condition declined in accuracy as
the game continued. None of the other main effects or inter-
actions were significant (ps > 0.2).

Experiment 2: Self-directed Subproblem Selection

While Experiment 1 established that memory constraints sig-
nificantly impact problem-solving and that structuring sub-
problems in memory-efficient ways improves accuracy, it
leaves open the question of how people choose subprob-
lems. We designed a free-play variant of our task (see Fig-
ure 3, right), where participants could determine their own
solution order, unconstrained by predetermined subproblem
sequences. We used a process-tracing paradigm inspired
by prior work on planning and problem-solving strategies
(Jain et al., 2023; Callaway et al., 2022), in which numbered
squares were only visible within a 3x3 spotlight window. To
see other parts of the board, participants had to move the win-
dow. This allowed us to collect fine-grained data on where
participants directed their attention, which subproblems they
engaged with, and when they abandoned or restructured their
problem-solving strategy.

Procedure We recruited 55 participants on Prolific. Partic-
ipants were briefed on the game and the spotlight mechanic,
and then proceeded to play the same twelve boards used in
Experiment 1, with the same performance bonus mechanics.
We excluded all trials for which participants performed below
chance, which in our boards is equal to the number of mines
divided by the number of unmarked squares.

Results Overall accuracy was high: participants achieved
an average board accuracy of 0.92 on each trial, and took on
average 141 seconds to finish each board. To compare the dy-
namics of human and model marking and accuracy rates over
time, we normalize trial runtimes across human and model

runs to lie between 0 and 1. Using the PyBADS package
(Singh & Acerbi, 2024; Acerbi & Ma, 2017), we fit our model
to the joint probability of marking a square and marking it
correctly at each time step, p(m,c|t) = p(c|m,t)p(m|t). To
account for the effects of guessing, we included a noise pa-
rameter €, which we fit in addition to the other model param-
eters.

For the full model, the best fitting parameters were a capac-
ity limit of L = 13.8 bits, metacognitive and time weights of
Bo=0.71,B7 = 0.65, and a softmax temperature of t=0.71.
In addition to our full model, we consider three ablations.
The unbounded model has infinite memory, the no rt model
fixes Br =0, and the no metacognition model fixes Bo =0.
We report the cross validated log likelihoods for each model,
obtained by splitting the dataset in half, fitting parameters
on one half, and evaluating the likelihood on the held out
data. The full model performs the best, followed by the
no rt, no metacognition, and unbounded memory model

(see Table 1).

Model ALLcy
Full Model 0
No RT (Br =0) -2,331
No Metacognition (Bo = 0) -9,915
Unbounded Memory (L =) -30,544

Table 1: The change in cross validated log likelihood for Ex-
periment 2 when ablating model parameters.

Figure 5 shows the probability that people (top) and the
model (bottom) marked squares correctly over time, with
each curve representing a different variable. The color cor-
responds to the square’s rank probability of being correctly
solved by humans in the middle of the game (¢t = 0.5). The
figure highlights that the model captures the dynamics of hu-
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Figure 6: Left: the total amount of time spent considering
a square. For humans, this was measured as the total time
a square was highlighted by the spotlight window. For the
model, this was the total amount of time that the square was
held in the model’s subproblem context. Right: time to first
correct mark, defined as the smallest time for which the prob-
ability of marking the square correctly exceeds 0.5.

man marking well over time: cells people solved correctly
later in the game were also ones that the model found dif-
ficult or did not attempt until late. We find a high average
alignment between the model and people in the average num-
ber of squares marked (r = 0.99), number of correctly solved
squares (r = 0.98), and average number of errors (r = 0.87)
at a given point in time. We also see alignment at the level of
individual squares, specifically in the probability of marking
(r=0.77), marking correctly (r = 0.78), and making an error
(r=10.49) at a given time point for a given square.

Finally, our model also captures the dynamics of partic-
ipants’ time allocation and attention. For each square, we
compute the total average time that a participant’s window
spotlight illuminated that square; for the model, we computed
the total amount of time that a constraint or variable was ac-
tive in the current subproblem context. We find a correlation
of (r =0.54) for the total time the model and humans con-
sider a square. We also find a correlation of (r = 0.75) for
the time to first correct mark, defined as the smallest time for
which the probability of marking the square correctly exceeds
0.5.

Discussion and Future Work

In this paper, we asked how people learn and reason in set-
tings that involve various interlocking constraints given a lim-
ited ability to keep track of more than a few bits of informa-
tion at a time. We developed a model that solves constraint
satisfaction problems under a fixed memory budget, using
metacognitive awareness of its own limits and imperfect rea-
soning to decide whether to consider a new piece of infor-
mation or to “give up” on a current reasoning path and start
on a new one. In Experiment 1, we found that participants
performed significantly better when problem sequences were
structured to reduce memory load. Their ability to solve hard
problems was influenced both by the order of subproblems
and their ability to externalize solutions. In Experiment 2, in
which participants played freely, the model closely matched

human time allocation and error patterns. Ablating model pa-
rameters significantly worsened the fit on a held-out dataset,
indicating that memory limits and metacognition about those
limits were both necessary to capture human performance.

Our findings add to a long line of research demonstrating
that problem decomposition is a core strategy in human rea-
soning, spanning domains from navigation (Balaguer et al.,
2016; Wiener & Mallot, 2003; Gordon, Chuang, & Pezzulo,
2025) to problem solving (Ward & Allport, 1997; Cooper
& Shallice, 2006). By providing a concrete implementa-
tion of subproblem selection in a logical reasoning task, our
model extends previous resource-rational accounts (Correa et
al., 2023; Binder et al., 2023; Ho et al., 2022), which focus
on the tradeoff between planning cost and subgoal complex-
ity but do not provide a process-level account of subproblem
choice. Our findings suggest that people implicitly optimize
this tradeoff by choosing subproblems to stay within cogni-
tive limits. An implication of our approach is that strategies
may be dynamically shaped by the interaction between in-
ternal cognitive constraints and external task structure. This
adaptability highlights a distinction between descriptive ac-
counts of problem decomposition and mechanistic models
that specify how subgoals are selected in real time.

The measure of “capacity overflow” in reasoning that the
model tracks can be understood as a particular instantiation of
a metacognitive confidence judgment (Fleming, 2024). Criti-
cally, confidence judgments can function not only as a retro-
spective assessment of accuracy but also as a prospective es-
timate of future success. On our account, people decide when
to continue integrating evidence versus when to give up on a
reasoning path based on how many valid possibilities they are
missing. By monitoring information lost in reasoning, then,
problem-solvers are able to anticipate potential failures based
on perceived memory deficiencies and adjust what they think
about accordingly. While we assumed here that people have a
perfect estimate of the information lost in reasoning, people’s
estimates of their own certainty are likely subject to noise and
bias themselves (Li & Ma, 2020).

A limitation of the model as formulated in this paper is that
it is explicitly designed for a “perfect information” setting—
uncertainty derives solely from its inability to represent all
available information. However, this need not be the case:
the information lost in reasoning is simply realized in terms
of subjective entropy about the true state of the environment.
Since the model updates its reasoning process based on the
expected impact of information gain and information loss, it
can handle probabilistic evidence obtained from the environ-
ment analogously. In this way, our model can actually be
viewed as a unifying framework for incorporating deductive
and inductive inference, with imperfect information deriving
either from noise in memory or the environment. An impor-
tant direction for future work will be to actually test this ac-
count in settings with probabilistic evidence.
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