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Abstract

Confidence is an important concept in cognitive science, as
it integrates seamlessly with our beliefs, goals, and decisions.
Humans naturally represent and express degrees of confidence
in beliefs and predictions that reflect their accuracy. However,
the dynamics of how our underlying beliefs about the world
relate to explicitly represented confidence over those beliefs is
yet not well understood. In this work, we make progress on
this question in the domain of concept learning. Specifically,
we analyze how confidence and beliefs jointly evolve in the ab-
sence of explicit feedback. We evaluate some leading compu-
tational accounts of confidence in the present literature, and we
find that these accounts do not accurately predict confidence in
the context of our task. We advocate for caution in making
claims about the generalizability of such accounts across tasks
or domains and propose some new model-based measurements
for predicting humans’ confidence judgments. Of these mea-
surements, we find that ones taking individual-level response
patterns into account perform the best. We close by suggest-
ing promising future directions for the study of confidence in
concept learning.
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Introduction

Humans display a remarkable ability to accurately quantify
their confidence in their beliefs and predictions and to act
accordingly. When faced with an uncertain situation, a per-
son may choose to wait and gather more information, take
a chance on a risky bet, or give up on a confusing problem.
More generally, having a calibrated sense of confidence helps
guide our actions. We do not cross the street if we think a car
might be about to round the corner, unless there is a better
chance that the noise behind us came from a charging bear.
Consideration of one’s own degree of belief thus supports ro-
bust and flexible decision making and planning, and is key to
how we represent the world and our place in it.

Our language reflects this fact, with confidence express-
ible in a myriad of ways. Sampling from English, “I think
that...”, “likely”, “might”, “maybe”, and “hope” each con-
vey subtly different flavors of the graded nature of belief. In-
deed, although different linguistic expressions of graded be-
lief have often been treated as indicators of some common
phenomenon in past work (i.e. confidence, certainty, and be-
lief used interchangeably on measurement scales), the valid-
ity of this assumption requires verification (cf. Pouget, Dru-
gowitsch, & Kepecs, 2016).

Though humans naturally refer to and represent their be-
liefs as graded and rely on graded belief representations to act

intelligently in the world, it is not clear how these representa-
tions are formed, and how those representations are translated
into explicit numerical judgments of confidence. Here, we in-
vestigate hypotheses for how one’s representation of their de-
gree of belief, or confidence as we refer to in the remainder of
this paper, might be computed during learning. Specifically,
we study human judgments of confidence in a sequential con-
cept learning paradigm in which participants are asked both to
make predictions and rate their degree of belief in their pre-
diction being correct. We analyze how people’s beliefs and
confidence jointly evolve as they gather additional evidence,
despite them never receiving explicit feedback on the correct-
ness of their predictions. We compare the predictive accuracy
of a battery of behavioral and model-based measures on these
confidence ratings across various word conditions (i.e. con-
fidence, certainty, and belief strength). Notably, we evaluate
several measures proposed to account for confidence in per-
ceptual discrimination domains on our task to evaluate the
extent to which those leading accounts of confidence might
be domain generalizable.

In the remainder of this paper, we will first establish a pos-
itive result regarding the exchangeability of the words used
in each condition, finding no meaningful differences in the
effects of the word used to prompt participants for confi-
dence judgements. We then show that although model-based
measures computed from a Bayesian posterior over beliefs
demonstrate significant predictive validity, the best predictor
of participant confidence ratings is one that is in principle not
computable given the lack of feedback in our experiment: the
correctness of a participant’s predictions. Finally, we discuss
promising approaches for closing the gap between what peo-
ple seem to know about their own belief validity, and theories
of how this knowledge might be computed.

Related works

In research on linguistic semantics, recent years have wit-
nessed a line of work devoted to the study of the meaning of
words related to (un)certainty such as “confident” (Cariani,
Santorio, & Wellwood, 2022), “certainly” (Lassiter, 2017),
and “believe”’(Hawthorne, Rothschild, & Spectre, 2016). Tra-
ditionally, philosophers and linguists regard belief as a bi-
nary concept—one either believes some proposition P or not
(Hintikka, 1962; von Fintel & Heim, 2011). However, seman-
ticists have recently found graded semantic representations of
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Figure 1: The experiment setup as seen by participants. Arrows indicate the flow of the experiment in a simple block. Partici-
pants see 6 blocks of single filter trials as above, where they were presented with 5 examples of an unknown filter acting on a
set of inputs, and asked to make predictions on a novel set of particles, along with providing their confidence in the prediction.
Observations and predictions were interleaved such that participants would observe one example, then predict on another set,
and so on. All previously seen examples were shown to the participant on the left side to control for any effects of working

memory maintenance.

belief words generally more appealing based on linguistic ev-
idence (Goodman & Lassiter, 2015; Hawthorne et al., 2016),
which converges to the long-held assumptions in Bayesian
cognitive science.

Past work aiming to characterize how confidence and re-
lated concepts are computed in the mind has focused largely
on perceptual discrimination tasks in which participants must
determine their confidence in a forced choice between two
or a few options (Maniscalco & Lau, 2012; Mamassian,
2016; Adler & Ma, 2018; Rahnev, 2020). People’s judg-
ments in these tasks typically closely track the probability of
a correct response under a signal detection framework, lead-
ing some to theorize that confidence in general arises from
the computed probability of some prediction being correct
(Drugowitsch, Moreno-Bote, & Pouget, 2014). And devi-
ations from this pattern can be explained by appealing to
metacognitive failures such as the incorrect weighting of sen-
sory signals (Shekhar & Rahnev, 2021).

While this line of work establishes a relationship between
posterior probabilities and confidence, it is unclear how these
results might generalize to different tasks or domains. Li and
Ma (2020) find that even adding one additional option to a
two-alternative forced choice perceptual discrimination task
raises complications for this story. In this case, average par-
ticipant confidence was not best predicted by the probability
of the correct response, but rather by the difference in prob-
ability between the best two responses. This finding impor-
tantly suggests that confidence does not map simply onto sin-
gular posterior probabilities in some distribution, but rather
involves non-local statistics from this distribution as a whole.

However, characterizing this involvement becomes more
complicated in tasks or domains in which the set of choices
is extremely large or even potentially infinite. For example,
many concept learning tasks require the formation and evalu-
ation of beliefs about the meaning of some concept where the
space of possible meanings is unbounded, defined in terms of

abstract compositional rules. While it is still natural to ex-
press degrees of confidence over beliefs in such tasks, it is
less obvious how these might be computed. It has been sug-
gested that people might approximate the probability of cer-
tain beliefs through their sampling propensity from a proba-
bility distribution implicitly defined in terms of a generative
model for the space of alternatives (Icard, 2016; Vul & Pash-
ler, 2008; Vul, Goodman, Griffiths, & Tenenbaum, 2014).
Concept learning tasks thus provide an exciting test-bed for
studying whether and how confidence might correspond to
probability distributions over beliefs, even when these distri-
butions are not fully accessible.

Marti, Mollica, Piantadosi, and Kidd (2018) makes
progress on this question by considering how a person’s cer-
tainty that they know the meaning of a Boolean concept might
map onto the true probability distribution over possible con-
cept meanings. Participants in this task repeatedly make pre-
dictions about whether an object is described by the concept,
as well as whether or not they are certain that they know what
the concept is. They are then immediately told whether or
not their prediction was correct. Marti et al. (2018) find that
while people’s confidence has a strong relationship with their
performance on the task, extrinsic cues such as recent feed-
back better predict participant confidence than attributes of
the normative probability distribution over beliefs, such as its
entropy or the probability of the most probable belief. This
result is interpreted as evidence that people derive confidence
judgements primarily from external sources of information
about how confident they should be rather than from some
attribute of the belief representation itself.

Approach

In many real-world instances of concept learning and belief
formation, people do not receive such explicit feedback. In-
deed, Marti et al. (2018) find that even during one shot learn-
ing, people express degrees of belief that track their success.
It seems unlikely that confidence is then fully determined by



external cues.

How might this puzzle be resolved? Here, we provide ini-
tial evidence that part of an answer lies in considering how
confidence might be derived from representations of proba-
bility which are plausibly accessible to a particular individ-
ual, perhaps derived from approximations of some normative
probability distribution over beliefs.

We do so by assessing participants confidence in an iter-
ative Boolean concept learning paradigm with a large space
of possible concept meanings, and in which no direct feed-
back is provided. Instead, participants alternate between ac-
cruing additional evidence about a concept, and making pre-
dictions and judgements about their confidence in their pre-
dictions. Thus, participants might only assess their own per-
formance by internally monitoring and updating the proba-
bility of their predictions as they incorporate additional ev-
idence. We then examine the relationship between reported
confidence and both previously established global metrics, as
well as individual-specific metrics, derived from a Bayesian
language of thought concept learning model.

Experiment

We employ a Boolean concept learning task (Feldman, 2000;
Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Pianta-
dosi, Tenenbaum, & Goodman, 2016), in which participants
learn and make predictions about filters which allow only cer-
tain types of particles to pass through them. Filters act on
groups of 8 particles at a time, and allow particles through
according to key feature axes: size, shape, color, position in
the group, and their logical combinations. For example, one
filter might only let through particles that are red and triangle
shaped, while another might only let through particles that are
on the left side of the group or that are small. See Figure. 1
for a depiction of a filter that a participant might learn about.
Participants learn about filters through examples, make
predictions, and rate their confidence in their predictions. We
also examine how differently worded instructions might af-
fect the way people report degrees of belief. Specifically, we
ask people to report either how confident they are that they
are correct, how certain they are that they are correct, or how
strongly they believe that they are correct. While we do not
expect participant behavior to vary significantly in the three
conditions, we consider it important and theoretically inter-
esting to test the assumption often made in the literature that
these words tend to indicate the same underlying concept.

Procedure

We recruited participants from Prolific (N= 150) to take part
in this task. Participants are evenly split between the three
word conditions and see the same wording each time they are
asked to give a rating.

Participants sequentially learn about 6 different filters, ran-
domly chosen from a group of 30 filter concepts. In a single
filter block, a participant is first presented with an example
of that filter acting on input particles, where the 8 input par-
ticles are seen above the filter and only the particles that are
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Figure 2: Histograms of ratings in all trials in the three word
conditions.

allowed through are seen below the filter. With this example
still in view, participants then make a prediction about which
of the particles in a new set of 8 will pass through the fil-
ter and rate their prediction according to their assigned word
condition using a sliding scale from 0 to 100. Participants re-
peat this alternating process of example and prediction until
they have seen 5 examples and given 5 predictions and ratings
for that filter. All examples seen so far remain on the screen
when making predictions, ensuring that participants can al-
ways access and remember their previous examples. !

Behavioral Results

People’s judgments in each of the word condition groups are
shown in Figure 2. We observe substantial overlap between
each of the three word conditions. Participants’ judgements
across word conditions exhibit reasonably high correlations
(r =0.75 for “confidence” vs “certainty”, r = 0.70 for “con-
fidence” vs “belief”, and r = 0.62 for “certainty vs belief”,
p < .0001 for each). For a point of reference, we compute the
split-half reliability within word conditions. We find that on
average for the between group correlations, r = (.73, while
for the within-group correlations, » = 0.72, across 20 such
random groupings. These results tentatively support the pu-
tative semantic similarities of the three words. Thus, we pool
participants together across word conditions for all subse-
quent analyses.

We find that across concepts, participants’ reported confi-
dence in their predictions has a strong positive relationship
with their accuracy (r = 0.713, p < .0001), suggesting that
participants’ computed confidence is well-calibrated. We also

! After every two filter blocks, we also asked participants to give
3 additional predictions and ratings, interleaved with two examples,
of the output of the two previously learned filters stacked on top of
one another. Participants are told that in such trials, the particles
will first be sent through the top filter, and the particles which pass
through that filter will then be sent through the bottom filter. We do
not analyze these compositional filter blocks in this work.



Table 1: The context-free grammar used to generate hypotheses.

Nonterminal Expansion Description
START — A D.LIST A function that takes D (input data) and returns a list of 1s and Os
LIST — everything A list representing that every particle goes through
— nothing A list representing that particle goes through
— (A LIST LIST) Each entry is 1 if it is 1 in both argument lists
— (V LIST LIST) Each entry is 1 if it is 1 in either argument lists
— (= LIST) Each entry is 1 —x for x in the argument list
— (fD) f applies to D, which returns a list
f — COLOR Color features

— SHAPE Shape features
— SIZE Size features
— POSITION Position features

COLOR — red? (For each entry) 1 if the particle is red else 0
— green? 1 if the particle is green else 0
— blue? 1 if the particle is blue else 0

SHAPE — circle? 1 if the particle is a circle else 0
— square? 1 if the particle is a square else 0
— triangle? 1 if the particle is a triangle else O

SIZE — big? 1 if the particle is big else 0
— small? 1 if the particle is small else 0
POSITION — top? 1 if the particle is among the top four else 0

— bottom? 1 if the particle is among the bottom four else 0
— left? 1 if the particle is among the left four else 0
— right? 1 if the particle is among the right four else 0

find that a participant’s average accuracy across the current
and past predictions for a concept is a very slightly numeri-
cally better predictor of confidence than accuracy on the cur-
rent prediction alone (r = 0.714, p < .0001). This result is
consistent with the claims of Mart{ et al. (2018) that prior
success adds power in predicting current confidence. Impor-
tantly, we find that this is the case even when participants do
not receive feedback about their past success.

Modeling

We take as a starting point standard language of thought
(LoT) models, which model concept learning as program in-
duction (Piantadosi, 2011). Specifically, filter concepts are
defined to be programs generated by a probabilistic context-
free grammar (PCFG), and learning a filter concept involves
identifying the programs that best explain the observed fil-
ter behavior. Motivated by the idea that people determine
plausible latent world states based on observed data in ac-
cordance with principles of Bayesian statistics (Tenenbaum,
Kemp, Griffiths, & Goodman, 2011), our model does so by
approximating the posterior probability distribution over pro-
grams.

Our PCFG, depicted in Table 1, implements a prior dis-
tribution over filter concept programs. These programs take
a list of particles as input and return a list of Os and 1s in-
dicating whether each input particle “passed through” (1) or

not (0). Programs are made up of primitive concepts: color
concepts (e.g. red, determining that only red particles pass
through), size concepts (e.g. big), shape concepts (e.g. tri-
angle), position concepts (e.g left), and their logical conjunc-
tions (e.g. red AND triangle). Additionally, we have trivial
terminals ‘everything’ and ‘nothing’ that allow all or none of
the particles to pass through, respectively.

The likelihood of an observation is calculated indepen-
dently for each particle. The probability of a particle pass-
ing through is 1 when the outcome for particle i mirrors the
program output and O otherwise.

The model learns a distribution over programs for a fil-
ter concept given observed input/output examples. Infer-
ence is performed using Sequential Monte Carlo with tree-
rejuvenation metropolis hasting steps, to mirror the sequential
structure of the task.

At each step, we compute the posterior predictive distri-
bution, obtained by marginalizing over candidate hypotheses,
weighted by the posterior probability of each hypothesis. Be-
cause participants rated confidence in their predictions and
not about their hypotheses for a filter, all model metrics of
confidence were calculated using this distribution, instead of
the posterior distribution over hypotheses.
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Figure 3: Learning curves of human participants and the
Bayesian model.

Modeling results

Our model learns most concepts quickly and more effectively
than humans. This indicates that while in many cases the
correct belief can be correctly deduced by an ideal learner,
humans likely have a more approximate representation of the
probability distribution over beliefs which nonetheless sup-
ports the eventual learning of the concept in most cases.

For our analyses we consider the probability distribution
produced by the model as a baseline for what might be
learned in principle based on the evidence available. We
later discuss methods humans might employ for approximat-
ing this distribution in a more resource-constrained manner.

We compute and compare multiple model-derived metrics
based on how well they can predict participant confidence.
These metrics are all transformations and statistics calculated
from the posterior predictive distribution over outputs, ob-
tained by marginalizing over all possible hypotheses.

We first calculate the max probability metric, which is
simply the probability of the best output under the posterior
predictive distribution. We also evaluate several other mea-
sures that take into account the probability of alternatives.
These are the difference and ratio measures proposed by Li
and Ma (2020), computed by taking the difference and the
ratio of the probabilities of the two best outputs under the
posterior predictive distribution, respectively, as well as the
entropy of the posterior predictive distribution, which Marti
et al. (2018) found to be one of the most predictive model
metrics in their concept learning paradigm.

While the metrics discussed above make the same predic-
tions for each individual, we might also consider model met-
rics which make different predictions based on an individual’s
responses. Here, we consider response probability, which is
the probability the model assigns to the particular response

Table 2: Confidence predictor results. The p-values for all
the Rs are below 0.001.

Predictor R R?

Avg Correct 0.714 510
Correct 0.713  .508
Response Probability 0.709  .504
Avg. Response Probability  0.633 401
Difference 0.296  .088

Max Probability 0.287 .083
Entropy -0.286 .082

Ratio 0272 .074

given by a participant. We also consider the average re-
sponse probability, which is simply the response probabil-
ity for an individual average across the current and previous
predictions for the current filter. We find that response proba-
bility performs best out of the model metrics, with compara-
ble predictive power as other behavioral measures. Response
probability and response correctness are closely related, since
our model generally assigns high probability to correct re-
sponses. However, the response probability explains addi-
tional variance over and above response correctness (a de-
crease in AIC to 1052 from 1062, and an increase in R? from
0.51 to 0.55), which may be mildly suggestive that the pre-
dictive power of response probability is not entirely due to it’s
correlation with response correctness.

Discussion

We find that leading hypotheses for confidence during per-
ceptual discrimination, namely max probability, difference,
and ratio, performed the worst out of the model metrics we
tested. This suggests that we should be cautious when making
general claims about how confidence judgments are related
to a probability distribution over hypotheses, as this relation
may in part depend on the task or domain. A both challeng-
ing and exciting step for future work is to evaluate the extent
to which this disparate set of results might be united under a
domain general account of confidence.

Global vs. individualized predictors

Past work has primarily focused on predicting human confi-
dence through model metrics that do not take individual re-
sponse patterns into account. Here, we find that there is in-
deed a strong relationship between confidence and the prob-
ability assigned by the model to the actual response given
(R = 0.709), rather than the probability assigned to the best
response. Because of the accuracy of our model, this metric
approximates the response correctness metric in many cases.
However, we find that it is not the case that the predictiveness
of response probability is fully explained by its relationship
with response accuracy. Additionally, unlike the correctness
metric, which requires access to the ground truth, some ap-
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Figure 4: Regression plots for the average correct, correct, response probability, and average response probability predictors.

proximation of the response probability is plausibly accessi-
ble to humans as they make their prediction.

Incorporation of past performance

We find that the average accuracy across past and current tri-
als performs almost identically with accuracy on the current
trial when predicting confidence, despite not being perfectly
correlated with each other. Therefore, while our best model-
based metric predicts confidence based only on the posterior
predictive distribution on the current trial, future work may
additionally attempt to predict confidence based on additional
factors that characterizes how one’s probability distribution
changes throughout learning.

At the same time, our finding that confidence is equally
well predicted by a metric which does not take past perfor-
mance into account stands in contrast to Marti et al. (2018),
whose results instead suggest that confidence is primarily de-
termined by past performance. These discrepancies may be
explained in part by various task differences. Participants in
our task did not have access to direct feedback on their predic-
tions. When this external information is available, it may in-
deed play an important role in determining confidence. How-
ever, it is certainly not necessary for computing confidence,
and real-world scenarios in which explicit feedback is avail-
able are likely to be the exception rather than the rule. Ad-
ditionally, in our experiment concepts interact with 8 items
at a time rather than 1, posing a greater computational chal-
lenge and potentially making it more difficult to understand
and incorporate information from past judgements.

Future directions

In this work, we find that participants’ confidence is well-
calibrated to correctness, despite the complexity of our
paradigm and the lack of explicit feedback. In fact, we find
that no model metric predicts confidence as well as current
and past accuracy does. In other words, the relationship be-
tween confidence and correctness is stronger than the rela-
tionship between confidence and the probability of correct-
ness as predicted by our model. This suggests that people’s
confidence judgements encode some information about the
correctness of their response which our model does not cap-
ture. We suggest two approaches for future work in light of
this result.

Firstly, the explanatory gap between response probability
and confidence judgments may be closed in part by models
that form more human-like belief representations. Indeed,
one limitation of this current work is the mismatch between
the human and model learning trajectories. More resource-
rational approaches might compute posterior representations
based on one or a few posterior samples. These sparser rep-
resentations might be more aligned with human distributions
over hypotheses and the predictions that they make. In partic-
ular, certain model metrics such as posterior entropy require
integrating over the entire support of the posterior, a computa-
tion that is intractable for most real-world problems. A more
plausible account could involve parsimonious consideration
of alternatives, instead of enumerating every single option.
Other modifications might include probabilistic forgetting of
prior evidence when computing the likelihood or ignoring of
certain primitive types (e.g. color) during search.

Another important direction for future work is integrating
models of metacognition with confidence judgments. It is
possible that humans do not have direct access to the com-
putations that support concept learning, nor a resulting pos-
terior distribution over hypotheses. In that case, explicit con-
fidence judgments may in part arise from higher-order com-
putation: predictions are made by a cognitively impenetrable
decision model, and an outer metacognitive model approx-
imates the probability that the first-order decision maker is
correct (Fleming & Daw, 2017). This higher-order model
could incorporate external cues such as past feedback or gen-
erate its own feedback signal based on the prediction made.

Conclusion

Much of cognitive science holds that people’s predictions and
actions arise from a graded, implicit degree of belief. How-
ever, it is now well-established that this implicit measure does
not map cleanly onto explicit judgments of confidence. We
present preliminary evidence showcasing a gap between be-
havioral predictors of confidence and current computational
accounts. We take a first step towards addressing this con-
ceptual gap, by proposing other individual-level model-based
measures, and advocating for a resource-rational perspective
on confidence judgments. In the future, we hope to character-
ize at an algorithmic level the connection between the poste-
rior in the head, and the confidence that people report.
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